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Figure 1. High-density surgical instrument counting. Counting surgical instruments reliably in high density scenarios is challenging
due to severe visual clutter and tight spatial packing of objects. To improve robustness, we propose Chain-of-Look Spatial Reasoning to
introduce visual chains into the counting process, explicitly modeling the sequential characteristic of human visual counting. In the above
figure, the first column indicates original high-density surgical instrument images, the second column presents visual chains and the third
column shows the predicted counting results, where detected surgical instrument handles are highlighted with laser points.

Abstract

Accurate counting of surgical instruments in Operating
Rooms (OR) is a critical prerequisite for ensuring patient
safety during surgery. Despite recent progress of large
visual-language models and agentic AI, accurately count-
ing such instruments remains highly challenging, partic-
ularly in dense scenarios where instruments are tightly
clustered. To address this problem, we introduce Chain-
of-Look, a novel visual reasoning framework that mim-
ics the sequential human counting process by enforcing
a structured visual chain, rather than relying on classic
object detection which is unordered. This visual chain
guides the model to count along a coherent spatial tra-
jectory, improving accuracy in complex scenes. To fur-
ther enforce the physical plausibility of the visual chain,
we introduce the neighboring loss function, which explicitly

models the spatial constraints inherent to densely packed
surgical instruments. We also present SurgCount-HD, a
new dataset comprising 1,464 high-density surgical instru-
ment images. Extensive experiments demonstrate that our
method outperforms state-of-the-art approaches for count-
ing (e.g., CountGD, REC) as well as Multimodality Large
Language Models (e.g., Qwen, ChatGPT) in the chal-
lenging task of dense surgical instrument counting. The
code and dataset is available at https://github.com/
rishi1134/CoLSR.git

1. Introduction
Counting surgical objects including instruments before and
after a surgical procedure is a critical safety protocol in Op-
erating Rooms (OR), aimed at preventing retained surgi-
cal items. Despite its importance, this process is still pre-
dominantly performed manually by surgical staff, making
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it time-consuming, labor-intensive, and prone to human er-
ror, particularly in high-density settings where instruments
are closely clustered or visually occluded. These challenges
are further exacerbated under time pressure or in emergency
procedures. Given that the average operating room costs
approximately $100 per minute, delays caused by manual
counting can have significant financial implications in addi-
tion to clinical risks. Thus, automating the surgical instru-
ment counting process holds great potential to reduce the
workload on surgical teams, minimize human errors, and
enhance workflow efficiency and patient safety. However,
accurate automated counting remains a challenging task due
to visual complexity and high similarity among instruments
in real-world OR environments.

Most existing approaches to object counting fall into
two main categories: density map-based and detection-
based methods. Density map-based methods estimate ob-
ject counts by summing the predicted density values across
an image, while detection-based methods count the number
of predicted bounding boxes. Although these methods have
achieved strong performance in various scenarios such as
crowd counting and open-set counting, they fundamentally
treat counting as a set-based problem, ignoring the sequen-
tial nature of how humans count, particularly in complex,
high-density environments. In practice, humans typically
follow a consistent visual path when counting objects to
avoid omissions or duplications, and to verify the counting.
For instance, as shown in Figure 1, technicians and nurses
counting the surgical instruments tend to follow a structured
visual sequence, such as scanning from left to right or right
to left. This sequential reasoning process is crucial in ensur-
ing accurate counts under cluttered and visually challenging
conditions, yet it is largely overlooked in existing automated
counting frameworks.

Motivated by the importance of sequential visual reason-
ing in human counting behavior, we introduce the Chain-
of-Look Spatial Reasoning (CoLSR) framework that ex-
plicitly models the counting sequence in dense object
scenes by locating each object as a counting point. CoLSR
explicitly models the sequential nature of human counting,
which is particularly critical in complex, high-density envi-
ronments. Introducing a direction for counting is especially
important in high-stakes surgical scenarios, where medical
staffs always follow a strict counting direction to ensure
accuracy rather than counting instruments in a random or-
der. Unlike traditional methods that treat object instances
independently, our CoLSR not only predicts the locations
of target objects (e.g., the handles of surgical instruments
in our task) but also captures the spatial dependencies and
structural relationships among them. To achieve this, we
first generate visual chains using a transformer-based count-
ing model, CountGD [2]. These visual chains provide guid-
ance for our model, enabling it to reason spatially and im-

prove prediction accuracy. To further align the predicted
visual chains with the underlying spatial structure of the
scene, we introduce a novel neighboring loss that encour-
ages the predicted object order to match the ground-truth
sequence. The neighboring loss encourages the model to
consider the proximity and ordering of adjacent objects,
and enforces consistency with realistic spatial arrangements
by penalizing implausible gaps or overlaps. Therefore, the
neighboring loss guides the model to learn a coherent spatial
chain that mirrors the sequential patterns humans naturally
follow during counting, leading to more robust and accurate
performance in high-density scenarios.

We evaluate our CoLSR framework through extensive
experiments on a high-density surgical instrument dataset
that we construct. Empirical results demonstrate that
CoLSR consistently outperforms state-of-the-art (SOTA)
object counting methods and multimodality large language
models in the context of densely packed surgical instru-
ments, highlighting its effectiveness in real-world, high-
complexity scenarios.

In summary, our contributions include:
• We introduce the novel and challenging task of dense

surgical instrument counting, a problem with significant
clinical implications.

• We introduce the Chain-of-Look Spatial Reasoning
framework that incorporates visual chains into the count-
ing process, explicitly modeling the sequential nature of
human visual counting. We design the neighboring loss to
equip the model with spatial reasoning capabilities by en-
forcing inter-object relationships and realistic spatial con-
straints.

• We construct a comprehensive dataset comprising 1,464
high-density surgical instrument images collected from
diverse real-world clinical settings. Extensive experi-
ments show that CoLSR delivers significant improve-
ments over existing methods for high-density surgical in-
strument counting, achieving both high accuracy and fast
inference.

2. Related Work
2.1. Object Counting
Human Counting. The spatial strategies and typical scan-
ning patterns humans employ when counting stationary ob-
jects are deeply rooted in the psychology of enumeration.
Gelman et al. [10] highlight the principle of one-to-one cor-
respondence (each item gets one and only one tag) which
strongly implies a systematic way of going through a set
to ensure accuracy. Logan et al. [24] further demonstrate
that the number of eye movement fixations increases lin-
early with the number of objects during counting, indicating
a sequential, item-by-item processing strategy when dealing
with larger quantities.
Machine Counting. Object counting with machines has



Figure 2. (A) Representative images from the SurgCount-HD dataset. Sample images from the dataset, showing typical variations and
an example annotation. (B) Test result from GPT5. We evaluate GPT-5 on an example from our SurgCount-HD dataset, where detected
surgical instruments are highlighted with red dots. GPT-5 predicts a count of 84, whereas the ground truth is 57.

traditionally been a detection-based or density-based esti-
mation problem. The density-based approach is particularly
prevalent in crowd-counting applications [6, 12, 18, 19, 25,
27, 34] mainly due to its dense and cluttered scenes. Prior
work in density-based counting has shown superior count-
ing accuracy [1, 3, 4, 9, 22] compared to detection-based
methods, which rely on bounding box prediction, a process
that becomes challenging in the presence of overlapping
and occluded object boundaries. Recent detection-based
approaches [2, 7, 21] have begun to achieve improved accu-
racy with the advantage of the inherent object localization
capability. Recent works like DAVE [26], DQ-DETR [15],
and CAD-GD [30] leverage both detection- and density-
based approaches to achieve better counting and localiza-
tion accuracy.

Although CountGD demonstrates strong performance in
open-set object counting, its category-agnostic design lim-
its semantic specificity and dense object localization. How-
ever, its open-world setup enables generation of ‘good-
enough’ priors even in few-shot settings, making it a useful
guiding mechanism for class-specific models with reduced
data and computational overhead.

2.2. Chain-of-Look Prompting
Chain-of-thought prompting [31–33] has been shown to en-
hance the reasoning capabilities of Large Language Mod-
els (LLMs) and reduce hallucinations by breaking down the
task into smaller steps in LLMs. Drawing a parallel to vi-
sion domain, we adopt the CoL prompting strategy to sup-
port spatial reasoning and model the sequential nature of
counting by prompting the detected visual cues in a chained
fashion, thereby enabling more structured visual attention
across densely packed instruments.

2.3. Prompt Tuning
Parameter-Efficient Fine-Tuning (PEFT) approaches, such
as prompt tuning [16], have proven effective in adapting
to newer data distributions while reducing both data and
computational requirements. Beyond efficiency, Yao et al.
[35] demonstrate that fusing frozen tokens with learnable
prompts further boosts the generalization and discrimina-

tive capability of prompt tuning. Moreover, Kang et al. [17]
introduce semantic-conditioned prompts that guide the im-
age encoder toward extracting target-semantic-highlighted
visual features.

With these existing contributions in mind, we explore in-
tegrating such PEFT approaches with the existing CountGD
framework to address its limitations in handling out-of-
distribution classes, particularly in highly dense scenarios.

3. Surgical Instrument Counting Dataset
We introduce SurgCount-HD, a novel dataset consisting of
High-Density arrangements of Surgical instruments col-
lected prior to surgical procedures. Each image contains
various types of surgical instruments compactly organized
on the back table (a common surgical preparation surface).
The dataset focuses on instrument layouts where handles
are oriented toward the camera, and bounding-box anno-
tations are provided for these handles, as shown in Fig-
ure 2 (A). Translational and rotational augmentations were
applied and the final the dataset comprises 1,236 training
images and 228 test images. All images were resized such
that the shorter edge is scaled to 800 pixels while preserving
the original aspect ratio. All annotations represent a single
class, namely “circular instrument handle”.

We used Roboflow [29] platform to manually label in-
strument handles across densely packed scenes. The an-
notation process required substantial manual effort due to
the high density and visual similarity among instruments.
The data collection and annotation process spanned several
months and involved multiple domain experts to ensure ac-
curacy and consistency.

The SurgCount-HD dataset presents significant chal-
lenges due to the tightly clustered and visually occluded
surgical instruments. Even for human annotators, counting
in such high-density scenarios is time-consuming and labor-
intensive. To assess the difficulty of this dataset, we evalu-
ated GPT5 [13] on selected examples from SurgCount-HD.
As shown in Figure 2 (B), GPT5 performs poorly in these
dense settings (detected 84 instruments, where the ground-
truth is 57), highlighting the challenge of this SurgCount-



HD dataset.

4. Chain-of-Look Spatial Reasoning
4.1. Problem Formulation
In this section, we introduce the Chain-of-Look Spatial
Reasoning (CoLSR) framework for high density surgical in-
strument counting. Given an image I ∈ RH×W×3 of high
density surgical instruments, our goal is to train a model Fθ
to localize surgical instrument handles and count the num-
ber y of surgical instruments in the image based on the lo-
calized instrument handles: y = Fθ(I), where θ denotes
the parameters of our model, H and W represents the height
and weight of the given image. Two major components con-
struct the CoLSR framework: (1) Visual Chain Generator
for producing the visual chain to guide the counting pro-
cess; (2) Neighboring Loss Function to introduce physical
constraints along the visual chain.
4.2. Visual Chain Generator
As shown in Figure 3, the first part of CoLSR is to generate
visual chain of the given image. The visual chain serves as
a structured visual sequence to guide the model’s counting
process under cluttered and visually challenging conditions.

The visual chain generator is constructed based on the
CountGD model [2]. Different from CountGD, we also take
class-specific text tokens as input to enhance the quality of
generated visual chain. Figure 4 (a) depicts the detailed ar-
chitecture of Visual Chain Generator.
Image Encoder. We first encode the input image I with a
Swin-B version of Swin Transformer [23] based Image En-
coder fI into spatial feature maps at three different scales,
followed by 1 × 1 convolution to produce image tokens zI
of 256 dimensions. The visual exemplar tokens zB are
obtained from the image tokens using aligned region-of-
interest pooling (RoIAlign) with the pixel coordinates spec-
ified by the visual exemplars B. The generated visual ex-
emplar tokens also have 256 dimension, which is the same
with image tokens and text tokens.
Text Encoder. For text input, a BERT-based text trans-
former [8] encoder fT is employed to encode the text de-
scription TS into a sequence of tokens zT with at most 256
dimensions. Then the n image tokens, p visual exemplar to-
kens and q text tokens are applied with the feature enhancer
fϕ.
Feature Enhancer. The generated visual exemplar tokens
zB is fused with the text tokens zT through the feature en-
hancer fϕ with 6 blocks self-attention modules. The gen-
erated fused feature zB,T are further fused with the image
tokens zI through the feature enhancer fϕ with 6 blocks
cross-attention modules. To enhance the grounding ability
of our model, we take the prompt tuning approach to in-
troduce class-specific text tokens TC as additional inputs
for the feature enhancer (see supplementary for details).

These class-specific text tokens serve as learnable parame-
ters to further improve the results of generated visual chains.
Therefore, the outputs from the feature enhancer are com-
puted as

zB,T, zI =fϕ((fθ(X),

RoIAlign(fθ(X),B), fT (TS), fT (TC)).
(1)

Query Selection. k image patch tokens are selected which
achieve the highest similarity with the fused visual exem-
plar B and text description TS. Following CountGD, we
set k to 900, serving as cross-modality queries input to the
cross-modality decoder fψ .
Cross-modality Decoder. The cross-modality decoder fψ
contains 6 blocks of self-attention and cross-attention to en-
hance the cross-modality queries. The final output of confi-
dence score Ŷ is computed as

Ŷ = Sigmoid(fψ(zI, zB,T, fS(zI, zB,TT , k))zB,TT ),
(2)

where fS denotes the above Query Selection module.

4.3. Neighboring Loss
The generated visual chain provides a coarse estimate of
the instrument count and serves as a structural guidance to
guide our model toward precise surgical instrument count-
ing. To incorporate directional consistency along the visual
chain, we introduce a neighboring loss term into the train-
ing objective. As illustrated in Figure 4 (b), given the pre-
dicted visual chain C, we first use the Hungarian matching
algorithm to associate each predicted bounding box with its
corresponding ground-truth bounding box. Specifically, for
the predicted {bi}NP

i=1 and ground-truth surgical instrument
handle {bj}NG

j=1, the value function v for Hungarian match-
ing algorithm is defined as:

vi,j = di,j + Lclsi,j , (3)

where vi,j is the value function for the pair (i, j) from pre-
dictions and ground-truth, di,j indicates the l1 norm of the
center points and Lcls denotes the classification cost (see
supplementary for further details).

Given the matched bounding boxes, we examine the lo-
cal regions of detected surgical instrument handles in a fixed
direction (either left-to-right or right-to-left). As illustrated
in Figure 4 (b), we introduce a neighboring loss that encour-
ages the distances between adjacent center points of bound-
ing boxes in the predictions to closely match those in the
ground truth:

Lneigh =
N∑
i=1

||diP − diG||2, (4)

where diP denotes the distance between two neighboring
center points of predicted bounding boxes, diG indicates



Figure 3. Architecture of Chain-of-Look Spatial Reasoning framework. High density surgical instrument images are first fed into
visual chain generator to produce visual chains. Neighboring loss is further applied to guide the counting process following the visual
chain.

Figure 4. Visual Chain Generator and Neighboring loss function. (a) Detailed architecture of Visual Chain Generator; (b) Neighboring
loss and Distance loss. Detailed illustrations on the architecture can be found in Section 4.

the distance between two counterpart neighboring center
points of ground-truth bounding boxes. This neighbor-
ing loss function promotes spatial consistency in the order-
ing of instruments and enforces a visual chain structure in
the model’s reasoning process, enabling the Chain-of-Look
mechanism. We further discuss this effect in Section 1 of
the Supplement Materials.

4.4. Training
As shown in Figure 4 (a), we train the image encoder fI ,
text encoder fT , feature enhancer fϕ, cross-modality de-
coder fψ and the learnable class specific text tokens TC.
The optimization objective of the whole model includes
CountGD [2]’s original bounding box localization loss,
classification loss, and our proposed neighboring loss:

L = λlocLloc + λneighLneigh + λclsLcls

= λloc

NG∑
i=1

|ĉi − ci|+ λneigh

NG∑
i=1

||diP − diG||2

+ λclsFocalLoss(Ŷ, T ),

(5)

where λloc, λcls and λneigh are weights to control each loss
term, Ŷ is the similarity matrix from Equation 2 and T ∈
{0, 1}NP×(NG+1) denotes the optimal Hungarian matching
between the NP predicted queries and the NG ground truth
handle instances, including an additional label for “no ob-
ject” similar to CountGD.

During training, the model receives a high density surgi-
cal instrument image I along with visual exemplars B as in-
puts. These inputs are processed through the image encoder



Method MAE ↓ RMSE ↓
CountGD [2] 7.84 10.71
DQ-DETR [15] 4.24 6.81
CrowdDiff [28] 18.63 22.93
REC [7] 2.82 4.50
Qwen2.5-VL-7B-Instruct [5] 17.06 21.72
CoLSR (Ours) 0.88 1.27

Table 1. Comparison with state-of-the-art methods, including: (1)
counting and detection methods spanning detection-based (DQ-
DETR), density-based (CountGD, REC), and diffusion-based
(CrowdDiff) approaches; (2) multimodality large vision-language
model (Qwen-2.5-VL).

and cross-modality modules to generate query representa-
tions, which are then optimized using the loss functions.
4.5. Inference
During inference, we only pass a high density surgical in-
strument image I as input to our model. The outputs are
predicted surgical instrument handle bounding boxes. We
further execute a post processing operator P to remove the
redundant predicted bounding boxes that share the horizon-
tal regions more than a predetermined threshold τ . Detailed
descriptions of post processing operator can be found in the
supplement.

5. Experiments
5.1. Evaluation Metrics
We employ Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) as evaluation metrics. The detailed
formulation of these two counting metrics and other local-
ization metrics can be found in the supplements.

5.2. Quantitative Results
In Table 1, we compare the performance of CoLSR with
state-of-the-art (SOTA) methods on the task of high-density
surgical instrument counting. For a fair comparison, all
SOTA counting baselines are finetuned on our SurgCount-
HD dataset, except Qwen. CoLSR outperforms all com-
peting methods in both MAE and RMSE metrics. The ma-
jor reason lies in the primary limitation of existing count-
ing methods, where they treat object instances as indepen-
dent entities, lacking the spatial reasoning necessary to cap-
ture the dependencies and structural relationships among
densely packed instruments. In contrast, CoLSR explicitly
models physical constraints, enabling it to reason over spa-
tial arrangements and structural coherence more effectively.
In addition, multimodality large vision-language models
(MLVL) such as GPT5 [13] and Qwen-2.5-VL [5] also per-
form much worse compared with CoLSR, where the MAE
of MLVLs are more than 10 times higher than CoLSR.

5.3. Qualitative Results
Figure 5 presents qualitative results of high-density surgical
instrument counting using CoLSR. The visualizations high-

Method MAE ↓ RMSE ↓
∆Lneigh 1.81 2.73
∆CSL 2.05 3.30
∆Visual Exemplars 1.5 2.21
∆Post 0.996 1.48
CoLSR (Full) 0.88 1.27

Table 2. Ablation study results. ∆Lneigh: without Neighboring
Loss; ∆CSL: without class-specific learnable prompts; ∆ Visual
Exemplars: without visual exemplars; ∆Post: without post pro-
cessing.

light the robustness of our approach across various chal-
lenging scenarios, including variations in camera angles
(Figure 5 (f), (h), (i)), instrument orientations (Figure 5 (b),
(c), (e)), and dense packing patterns (Figure 5 (a), (d)).

Figure 7 provides a visual comparison between our ap-
proach and existing SOTA methods for high-density instru-
ment counting. As shown, SOTA methods often fail to
detect all instrument handles, particularly in cluttered re-
gions, resulting in under-counting. In contrast, CoLSR ac-
curately localizes the instrument handles, as indicated by
the cropped bounding boxes, demonstrating its effective-
ness in handling densely packed scenes. To evaluate the
generalization ability of our method, we test our model on
in the wild images from operating rooms. Results in Fig-
ure 6 indicate our method continually achieves robust re-
sults, demonstrating the generalization ability to real world
operating room scenarios. We show more results in supple-
ment material to evaluate the generalization ability of our
method.

5.4. Inference Speed
Our model is lightweight and achieves fast inference,
running over 100× faster than manual human counting.
Our mobile application achieves a peak end-to-end (E2E)
latency (including pre-processing, inference, and post-
processing) of only 0.32s, compared to 44s required for
manual counting. Average latency is 0.28 ± 0.02s for our
mobile application versus 25.12± 11.63s for human count-
ing. A comparison figure and demo video are included in
the supplementary material for clearer visualization.

5.5. Ablation Study
We conduct the following ablation studies to verify the
effectiveness of each proposed component, including the
neighboring loss, the class-specific learnable prompts and
visual exemplars.
Effectiveness of neighboring loss function (∆Lneigh ).
Removing the neighboring loss diminishes the model’s abil-
ity to construct a visual chain for spatial reasoning, as
shown in Fig.8 (a). This leads to a performance drop of
approximately 105% in terms of MAE, as shown in Table 2.
Role of Learnable CSL Tokens (∆ CSL). Eliminating the
CSL prompts significantly impairs the model’s ability to



Figure 5. Qualitative results. We present qualitative results from our CoLSR. Predicted surgical instruments number and ground-truth
number are listed on each image. The detected surgical instrument handles are highlighted with laser points, which are also highlighted
with red bounding boxes.

Figure 6. Generalization ability analysis. We evaluate our model’s generalization ability via in the wild images in operating rooms. The
detected surgical instrument handles are highlighted with laser points, which are also highlighted with red bounding boxes.

detect fine-grained handle boundaries (further discussed in
the supplementary material). This is further exacerbated
when instruments are densely packed, causing the handle

boundaries to appear merged as highlighted in Figure. 8
(b). Consequently, the model’s performance degrades by
approximately 133% in terms of MAE, as shown in Table 2.



Figure 7. Comparison with SOTA methods. Our CoLSR approach is compared with four existing SOTA methods for counting: CountGD,
DQ-DETR, CrowdDiff and REC. For the four figures on the left side, green dots represent ground-truth, red dots represent predictions from
different models.

Figure 8. Ablation Studies. (a) The highlighted region shows
where the model failed to make correct predictions, indicating
the model’s limited ability to form coherent visual chains. (b)
Missed handles are mostly in areas with unclear boundary separa-
tion, making them harder to detect without class-specific learnable
prompts. (c, d) Compared with the ablated results in (a) and (b),
CoLSR effectively generates accurate predictions for the location
of tightly packed surgical instrument handles.

Pure Zero-shot training and inference (∆ Visual Exem-
plars). As shown in Table 2, training and evaluation in a
purely zero-shot setting without visual exemplars leads to a
performance drop of approximately 70% in terms of MAE.
Role of postprocessing (∆ Post). We remove postprocess-
ing during inference and found slight drop of both MAE and
RMSE in Table 2.

More ablation studies. In supplementary, we show ad-
ditional ablation studies including multi-loss weight selec-
tion, CSL token placement, among other variations.

5.6. Failure Analysis
In the supplementary material, we present representative
failure cases. Most errors arise from the dense and visu-
ally ambiguous appearance of instruments in the images.
Empirical results indicate that performance degrades in sce-
narios where gaps or occlusions disrupt the continuity of
surgical instruments, making spatial reasoning more chal-
lenging. Potential solutions include leveraging multi-view
inputs (e.g., short video sequences capturing multiple view-
points) or incorporating depth information to better handle
severe occlusions. As future work, we plan to integrate such
diverse visual inputs into the counting pipeline to further en-
hance the robustness and reliability of our approach.

6. Conclusion
We introduce Chain-of-Look spatial reasoning framework
that is inspired by human sequential counting behavior, de-
signed to improve accuracy in densely packed surgical in-
strument scenes. By enforcing a structured visual chain and
introducing a neighboring loss to model spatial constraints,
our method outperforms existing SOTA counting models as
well as multimodality large language models. This frame-
work offers a generalizable approach that can be extended to
broader applications requiring spatial reasoning in dense vi-
sual environments. Additionally, we introduce SurgCount-
HD, a high-density surgical instrument dataset to facilitate
benchmarking and drive future research in this domain.
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8. Analysis on Visual Chain Reasoning via
Neighboring Loss

We demonstrate that the neighboring loss enforces a Chain-
of-Look mechanism within the model’s reasoning process.
Figure 9 visualizes the self-attention scores of the query
proposals in the Cross-Modality Decoder. At the first de-
coder layer (Layer 0), where the model primarily captures
low-level spatial cues, we observe that removing the neigh-
boring loss results in higher attention entropy, with focus
spread across non-adjacent queries. In contrast, applying
Lneigh constrains each query to attend mainly to its im-
mediate predecessors and successors, forming a snake-like
chained structure.

At the final decoder layer (Layer 5), the attention maps
show that this chained behavior also shapes high-level se-
mantic reasoning. For instruments that are densely clus-
tered (labels 5–8), the model leverages the most visible and
confident queries as anchors, reflected by the pronounced
dark attention band, to improve the representation of un-
certain and ambiguous queries. These structured interac-
tions suppress hallucinations and ultimately improve count-
ing accuracy.

9. Implementation Details
We train the model for 30 epochs with a learning rate of
1 × 10−4 using the Adam optimizer and a weight decay
of 1 × 10−4, which is reduced by a factor of ten after the
10th epoch. Training is performed with a batch size of 4 on
a single NVIDIA RTX 3090 GPU. The multi-loss weights
are set as follows: λloc = 10, λneigh = 100, and λcls = 1.
The number of CSL prompts used is 64, and the confidence
threshold σ is set to 0.26. The rest of the training setup,
including data pre-processing and augmentation strategies,
follows the original CountGD [2] configuration.

10. CSL Prompt Design and Implementation

The modified Feature Enhancer takes two different Class
Specific Learnable (CSL) token instances, both initialized
with the same text but diversified with Gaussian noise (Fig.
10). The first set of tokens are prepended to the concate-
nated set of visual exemplar and text tokens. We treat
the CSL token as tunable text prompts, hence they are
prepended to the latent tokens derived from text. These to-
kens, along with the image token, are used in the Bidirec-
tional Attention module, where image-text and text-image
cross-attention are computed.

The second set of CSL token is prepended to the output

of the bidirectional module and fed into the self-attention
layer, where the self-attention between the text tokens is
calculated.

We introduce two sets of tokens to represent distinct
functional roles: one captures the relation between text and
image, while the other addresses text-specific nuances. The
fused feature embedding F is constructed by concatenating
these components:

Fencoder = [TCSL ; Ttext ; Tvis] ∈ R(l+2h)×d, (6)

where TCSL ∈ Rl×d denotes the l CSL tokens, while Ttext
and Tvis (both ∈ Rh×d) represent the text and visual exem-
plar tokens, respectively. Following standard prompt-tuning
methodology, we discard TCSL before passing the sequence
to the decoder.

Fdecoder = [Ttext ; Tvis] ∈ R(l+h)×d (7)

10.1. Value Function for Hungarian Matching

We utilize the CountGD formulation to define the Hungar-
ian matching value function v(i, k) between prediction i
and ground-truth k. Given α = 0.25, γ = 2:

v(i, k) = ∥bi − bk∥1︸ ︷︷ ︸
bbox cost

+

C∑
j=1

ỹkj [Lpos(pij)− Lneg(pij)]︸ ︷︷ ︸
cls cost

,

s.t. Lpos(p) = −α(1− p)γ log(p+ ε),

Lneg(p) = −(1− α)pγ log(1− p+ ε),

(8)

where b represents box center coordinates, ỹkj is the nor-
malized target label for class j, and pij is the predicted
probability.

11. Inference Speed

Our model is lightweight and achieves fast inference, run-
ning over 100× faster than manual human counting. The
experiments were performed across a range of scenarios,
with the number of surgical instruments varying from 7 to
49 per trial. In each trial, two individuals performed man-
ual counts, followed by a count using the mobile applica-
tion. Figure 11 illustrates the contrast in performance be-
tween the traditional method and the app-based approach,
highlighting the real-time efficiency gains enabled by the
proposed system.



Figure 9. Analysis on Chain-of-Look Visual Reasoning via Spatial Neighboring Loss. Left: original surgical image. Right: attention
maps from different decoder layers. “−Lneigh” denotes models trained without the Neighboring Loss, whereas “+Lneigh” indicates models
trained with it. The visualizations show the self-attention outputs of the Cross-Modality Decoder, where each query corresponds to one
surgical instrument (indexed 0–9). Queries and their associated attention distributions are ordered left-to-right according to the instrument
labels in the original image. For each setting, we display attention maps from the first decoder layer (Layer 0), which primarily captures
low-level spatial relationships, and from the final decoder layer (Layer 5), which reflects higher-level semantic focus.

Figure 10. CSL Prompts Initialization with BERT Text Encoder

12. Extended Ablation Results
12.1. CSL Prompts Placement: Appending vs.

Prepending
Previous studies [20] have highlighted how prompt place-
ment affect transformer models. Our analysis (Table. 3)
reveals that prompt placement significantly impacts perfor-
mance, with prepending yielding 32% better MAE than
appending. Attention analysis shows prepended prompts
maintain 3× stronger coupling with image features, while
gradient flow analysis indicates on average 177× stronger
supervision signals, explaining the performance disparity.

12.1.1. Metrics Definitions
CSL Token Gradient Norms: We measured the gradient
norms for both types of CSL tokens-text and fusion-across
all six encoder layers. For each type, the gradients were av-

Placement MAE ↓ RMSE ↓ CSL Token Grad ↑ Vision Attention Weights ↑
Append 1.30 1.98 Total: 0.044 Mean: 0.00225

Avg: 0.0037 Std: 0.00325
Prepend 0.88 1.27 Total: 7.876 Mean: 0.00643

Avg: 0.656 Std: 0.00498

Table 3. Prompt Placement Performance comparison across CSL
prompt placements. See Section 12.1.1 for metric definitions.

eraged over the layers using a single training batch to assess
their relative contribution during backpropagation.
Vision Multi-Head Attention Weights at Fusion Mod-
ule: To analyze the influence of prompts on visual atten-
tion, we extracted attention weights from the fusion mod-
ule. Prompt-related weights were stacked and averaged
across all four attention heads, followed by averaging over
the batch dimension. This process was repeated for each
of the six encoder layers, and the resulting layer-wise av-



Figure 11. Time comparison between human counting and our
model

Initialization Type MAE RMSE
Random 1.32 1.96
Semantic (”scissor handle”) 0.88 1.96

Table 4. Prompt Initialization Strategy Prepending task-specific
initialized CSL prompts yields better performance compared to
random initialization.

erages were further averaged to obtain a final mean value.
The same training batch was used for both prompt place-
ment configurations to ensure consistency.

We further investigate the impact of prompt initializa-
tion when prompts are prepended. Table 4 shows that using
task-specific initialization leads to notable performance im-
provements.

12.2. LoRA versus CSL Tokens

We explore whether adding explicit spatial conditioning
using learnable prompt tokens offers benefits over weight
adaptation methods in our instrument counting task. To
test this, we inserted LoRA [14] adapters at the fusion and
text encoder layers, mirroring the placement of CSL tokens.
The adapter configuration (α=32, Rank =16) was chosen to
match the parameter count of the CSL tokens, allowing for
a fair comparison.

LoRA Parameters
• Rank=16, α=32
• LoRA Params Per Layer : 16 (Rank) × 256 (In Features)

+ 16 (Rank) × 256 (Out Features) = 8,192 parameters
• Text Encoder layers: 6 layers × 2 LoRA modules × 8,192

Per Layer ≈ 98K parameters
• Fusion layers: 6 layers × 2 LoRA modules × 8,192≈ 98K

parameters
• Total LoRA Parameters ≈ 196K parameters

Method MAE ↓ RMSE ↓ Mean L2 (matched) ↓ Mean IoU (matched) ↑
LoRA 5.63 7.66 10.42 0.028
CSL Tokens 0.88 1.27 6.38 0.290

Table 5. Counting & Localization Metrics: LoRA vs. CSL
Tokens. The Mean IoU is the average IoU of all the matched
bounding boxes in the test set.

(λcls, λloc, λneigh) Lcls Grad Lloc Grad Lneigh Grad MAE RMSE
(1, 1, 1) 0.915 0.0005 0.0002 3.23 4.20
(1, 10, 100) 0.737 0.0007 0.0003 2.35 3.59
(1, 10, 100) 28.50 0.055 0.106 0.88 1.27

Table 6. Gradient Magnitude Analysis Multi-Loss scaling factor
selection.

CSL Parameters
• Text Encoder layers: 64 (CSL Token) × 256 (feature dim)

× 6 layers ≈ 98K parameters
• Fusion layers: 64 (CSL Token) × 256 (feature dim) × 6

layers ≈ 98K parameters
• Total CSL Parameters ≈ 196K parameters

Our comparison between CSL Tokens and LoRA shows
that token-level spatial conditioning leads to superior ob-
ject detection performance despite LoRA’s parameter effi-
ciency. In our experiments, LoRA struggled with instru-
ment localization, often missing center points and produc-
ing inaccurate bounding boxes (Figure. 12). This suggests
that LoRA’s weight-space adaptation may lack the direct
spatial conditioning beneficial for precise object localiza-
tion in our setting. In contrast, the contrastive learning ca-
pability shown with CSL tokens (Section 13) appears to
improve spatial reasoning that goes beyond parameter ef-
ficiency considerations. Our findings suggest that for this
spatially sensitive detection task, explicit spatial condition-
ing through prompt tokens may provide capabilities that our
constrained low-rank weight modification approach could
not achieve.

12.3. Multi-Loss Weight Selection
Our method incorporates three distinct loss functions:
Cross-Entropy Loss (Lcls), Distance Loss (Lloc), and
Neighboring Loss (Lneigh). We measured gradient norms
across key shared model layers (encoder, decoder, fusion,
text) for three loss weighting configurations to validate our
λ selection strategy.

As shown in Table. 6 there exists a high imbalance in
gradient magnitudes between the cross-entropy (CE) loss
and auxiliary losses, with the latter exhibiting gradients
1,000–4,000× weaker under equal weighting. As a result,
auxiliary objectives are effectively ignored during training.
By introducing a loss weighting configuration of λ = (1, 10,
100), we observe a substantial increase in auxiliary contri-
bution (0.56% vs. 0.09%) while preserving CE dominance.
This leads to a 30× increase in total gradient activity, en-



Figure 12. Predicted bounding boxes using the LoRA method. Boxes are noticeably oversized and misaligned.

abling more expressive multi-objective optimization.

13. CSL Prompts Effect and Contrastive Fea-
ture Learning

When trained without CSL prompts, the model’s attention is
spread across and less focused on the handle regions, as il-
lustrated in Fig. 13(b–c). In contrast, CSL tokens learn con-
trastive features, as shown in Fig. 13(d), where the attention
on the handle is minimal. This complementary negation
helps the text tokens to attend to the handle regions more
precisely. We experimented with varying numbers of CSL
prompts {16, 32, 64, 128}, and found that 64 prompts pro-
duced the best performance based on the MAE metric.

14. Determining Instrument Orientation for
Neighboring Loss

Firstly, we extract the center points from the predicted
bounding boxes. Using these center points, we compute
the difference between the maximum and minimum coor-
dinates along the x- and y-axes. The axis with the largest
difference is considered the dominant orientation of the in-
struments.

1− int
((
Pmax
x − Pmin

x

)
>

(
Pmax
y − Pmin

y

))
=

{
0 for x-axis
1 for y-axis,

(9)

where:
Ppred = {(xi, yi) | point i is predicted},
Px = {xi | (xi, yi) ∈ Ppredicted} with Px ⊆ [0,W ],

Py = {yi | (xi, yi) ∈ Ppredicted} with Py ⊆ [0, H],

(10)

W and H denote the weight and height of the image.

15. Evaluation Metrics
15.1. Counting Metrics
15.1.1. MAE, RMSE
We use the standard Mean Absolute Error (MAE) and the
Root Mean Squared Error (RMSE) to measure as evaluation
metrics.

MAE =
1

N

N∑
i=1

|NP −NG|,

RMSE =

√√√√ 1

N

N∑
i=1

(NP −NG)2,

(11)

where N is the number of image samples, NP is the pre-
dicted count and NG is the ground truth count for image
Ni.

15.1.2. Grid Average Mean Absolute Error
We also measure the Grid Average Mean Absolute Error
(GAME) [11] to evaluate the spatial accuracy of the pre-
dicted counts within each image. GAME quantifies how
well the counting predictions are localized across subdi-
vided regions of the image. Given that surgical instruments
in our dataset are typically concentrated within a limited
spatial area, the GAME scores tend to decrease as the grid
resolution parameter L increases (Table. 7). This is due to
the presence of numerous grids containing no instruments,
which contribute zero error to the overall score. Of the 228
images in our test set, only 98 include instance-level annota-
tions suitable for spatial evaluation. Therefore, the GAME
scores and localization metrics were calculated exclusively
on this subset.



Figure 13. a) Original Input Image b) Image-Text Attention Map extracted from the Feature Fusion Block - Without CSL Prompts c)
Image-Text Attention Map when trained with CSL Prompts d) Image-CSL Token Attention Map

Moreover, we also use detection-related counting met-
rics such as precision, recall and F1-score as defined in
Equation. 12.

Method GAME-L1 ↓ GAME-L2 ↓ GAME-L3 ↓
CountGD [2] 1.01 0.41 0.14
REC [7] 0.60 0.25 0.08
DQ-DETR [15] 0.68 0.25 0.07
CoLSR (Ours) 0.54 0.23 0.07

Table 7. GAME scores (L1, L2, L3) for different methods.

15.2. Localization Metrics
Since the number of predicted instrument locations may not
match the ground truth (GT) annotations, computing local-
ization accuracy is non-trivial. To address this, we first filter
predictions by selecting only those whose center points fall
within any GT bounding box. These filtered predictions are
then matched to GT points. In cases where multiple predic-
tions fall within the same GT box, we apply the Hungarian
algorithm using L2 distance as the cost function to perform
one-to-one matching.
Unmatched predictions are treated as missed detections,
while matched pairs are used to compute localization met-
rics. Specifically, for each image, we calculate the mean

L2 distance (average localization error), the median L2 dis-
tance (typical error at the 50th percentile), and the 95th
percentile of L2 distances (representing the worst 5% of
matched localizations). To obtain a single dataset-level met-
ric, we take the mean of these three values across all images
(Table. 8). A similar procedure is applied for computing the
Mean IoU reported in the Table. 5.

Steps for a single input :
Pfiltered = p ∈ Ppred | ∃b ∈ BGT such that p ∈ b

M∗ = argmin
M

∑
(p,g)∈M

|p− g|2

di = |pi − gi|2

d̄ =
1

N

N∑
i=1

di

Median Error = median(d1, d2, . . . , dN )

95th Percentile Error = P95(d1, d2, . . . , dN )

True Positive (TP) = N

False Positive = len(Ppred)− TP

False Negative = len(GGT )− TP

(12)



Figure 14. Example of duplicate points highlighted

where :

Ppred : The set of all predicted center points.
BGT : The set of all ground truth (GT) bounding boxes.
GGT : The set of all GT center points.
Pfiltered : The set of all filtered center point prediction.
M∗ : The optimal one-to-one matching
di : The L2 distance for the i-th matched pair(pi, gi)
N : The total number of matched pairs.

16. Post Processing Operator
Due to the dense and ambiguous appearance of the instru-
ments in the images, the model frequently produces multi-
ple duplicate detections close to each other (Fig. 14). To
mitigate this, we applied a post-processing step to eliminate
such points.

First, we sort the detected center points from left to right
or top to bottom based on their orientation (Section 14). For
each detected point, we examine neighboring points within
a distance threshold θ along the given axis. If multiple
points are found within this range, we retain only the point
with the highest confidence score and discard the others,
Alg: 1.

Algorithm 1: Point Selection with Distance
Threshold

1: for Pi, Pj ∈ {left, right} do
2: if |Pi − Pj | < d then
3: Pselected ← argmaxP∈{Pi,Pj} conf(P )
4: Premoved ← argminP∈{Pi,Pj} conf(P )
5: Remove Premoved from set
6: end if
7: end for

17. Divide and Conquer Inference
CoLSR is designed to handle densely packed instrument
clusters, which are the most common setup in real-world
surgeries. However, its performance degrades when multi-
ple dense clusters are spatially separated (Fig.15-a). This

is due to the visual chain constraint enforced by the neigh-
boring loss, which fails to capture long-range dependencies
in such cases. To address this, we follow a two-stage ap-
proach, the Divide-and-Conquer strategy (Alg: 2,3). In the
first stage, the entire image is processed by the network,
and the predicted center points are sorted along the x- or y-
axis, depending on the instrument orientation (as described
in 14).

We then compute the L2 norm between neighboring cen-
ter points. If the distance between two neighbors exceeds δ,
the points on the left are grouped into one, and those on the
right into another. This process is repeated until all center
points are assigned to clusters. Each cluster is then cropped
from the original image and second-stage inference is per-
formed independently on each dense region. Finally, the
predictions of all the clusters are stitched together to pro-
duce the final output (Fig.15-b).

CountGD [2] REC [7] DQ-DETR [15] CoLSR (Ours)
Mean L2 distance ↓ 12.79 6.89 5.84 6.43
Mean of Median L2 distance ↓ 12.01 6.33 5.46 5.99
Mean of 95th-Percentile L2 distance ↓ 21.05 12.66 10.56 11.44
Precision ↑ 0.41 0.73 0.84 0.85
Recall ↑ 0.41 0.74 0.81 0.84
F1 score ↑ 0.41 0.74 0.83 0.85

Table 8. Comparison of localization metrics results across differ-
ent methods.

18. Limitations of Generalization
While our method demonstrates robustness to variations
in angle and lighting conditions typical of operating room
(OR) environments (Figure. 16, Main Paper - Figure. 7), the
scope of this work is limited to surgical instrument count-
ing, as indicated by the paper title. Consequently, general-
ization to other domains may require further investigation.



Figure 15. a) Prediction with single-pass inference b) Prediction with Divide-and-Conquer approach

Algorithm 2: Distance-Based Clustering
1: clusters← {}
2: cluster ← [0] {cluster start}
3: for i = 0 to |pred points| − 2 do
4: pi ← pred points[i]
5: pi+1 ← pred points[i+ 1]
6: if ∥pi − pi+1∥2 > δ then
7: cluster.append(i) {cluster end}
8: clusters.append(cluster)
9: cluster ← [i+ 1] {next cluster start}

10: end if
11: end for
12: slices← slice image(clusters)
13: return slices

Algorithm 3: Two-Pass Counting
1: pred points← run inference(image) {first pass}
2: slices← create cluster(pred points, δ)
3: final detections← {}
4: for slice ∈ slices do
5: pred points← run inference(slice) {second pass}
6: final detections.append(pred points)
7: end for
8: return final detections

Figure 16. Robust inference samples captured from multiple angles.
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