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Abstract

The field of image restoration, specifically image inpainting has seen recent re-
markable advancements with the development of generative models. Among these,
diffusion models have emerged as a powerful class of techniques capable of pro-
ducing quality image completions by progressively denoising an image noisy low
resolution image. This process often involves numerous iterative steps, leading to
significant computational overhead and hence slow inference times. Such limita-
tions can hinder the practical application of these models in scenarios requiring
rapid image processing.

This project explores and tries to enhance the efficiency of diffusion-based image
inpainting. We explore various optimization strategies aimed at accelerating the
inference process without substantially compromising the quality of the result
images. Our efforts build upon the existing frameworks, such as ResShift known
for its efficiency in image restoration tasks, and seek to refine these approaches
further. This project implements two distinct strategies, including Masked-Variance
Diffusion (MVD), where diffusion noise is primarily applied to unknown image
regions, and Exact Masked-Markov Diffusion (EMMD), which defines a true
pixel-wise Markov forward process with an exact posterior to guide the reverse
diffusion. We examine and implement these techniques, from modifying network
architectures to rethinking the diffusion process itself, all with the final goal of
achieving faster, yet still effective, image inpainting. Our code and model are
available athttps://github.com/rishil134/masked-resshiftl

1 Background

Diffusion models are at the core of so many groundbreaking capabilities that we see in image
generation and restoration. At their core, these models operate on a simple principle: learning to
reverse a noise process. Starting from this noisy state, it learns to carefully denoise the data, step
by step, ultimately reconstructing a high-quality, coherent image. This iterative refinement is what
allows diffusion models to generate such detailed and realistic outputs, making them particularly
adept for complex tasks like image inpainting, where the model must fill missing regions with the
surrounding content.

Despite their power, a well-documented challenge with many diffusion models is their computational
demand, primarily due to the large number of sampling steps typically required for inference. This
can lead to slow generation times, which is a hurdle for real-time or interactive applications. This
aim for efficiency, without a significant trade-off in output quality, has given way to research into
more optimized diffusion frameworks.

Recent work in this area includes [3], which proposes a framework to optimize generation time by
treating image tokens as active or inactive regions based on changes in their content. This approach
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processes only the active regions for denoising, while caching the inactive ones for faster processing,
demonstrating efficient redundancy reduction. Another such work is ResShift [1], designed primarily
for image super-resolution (SR). Instead of the conventional approach of diffusing an image to pure
noise, ResShift constructs a more direct and efficient Markov chain. This chain facilitates a transition
between a high-resolution (HR) image and its low-resolution (LR) counterpart by progressively
shifting the residual (the difference, ey = yo — xg) between them. This elegant modification
substantially shortens the diffusion path, enabling ResShift to achieve impressive results in as few as
4 sampling steps.
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Figure 1: ResShift Generation Process.

While ResShift marked a significant step forward in efficient image restoration, we recognized that
its principles could be further adapted and potentially optimized for the specific challenges of image
inpainting. The original ResShift framework, though efficient, treats the entire image (or its latent
representation) fairly uniformly throughout its diffusion steps. We hypothesized that for inpainting,
where there’s a clear distinction between known, fixed regions and unknown regions to be filled,
a more targeted approach might yield benefits. Could we reduce redundant processing in known,
perfect regions? Furthermore, could the diffusion process be refined for mask awareness, perhaps by
adapting noise injection or variance scheduling in these areas, similar to [2]? These considerations
paved the way for our exploration into specialized strategies like Masked-Variance Diffusion (MVD)
and Exact Masked-Markov Diffusion (EMMD), which we will detail in the subsequent Method
section.
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Figure 2: MVD Generation Process.

1.1 Dataset

To check our explorations and benchmark our methodologies, we utilized the Synthetic CelebA-
2k dataset for training and evaluation purposes within this project. This dataset is a derivative of
the well-known Large-scale CelebFaces Attributes (CelebA) dataset, which is a prominent public
benchmark in the computer vision community. The full CelebA dataset contains over 200,000 images
of celebrity faces, each extensively annotated with 40 binary facial attributes, such as hair color,
gender, and expression, and includes information like landmark locations across approximately
10,177 unique identities. Given its scale, diversity in pose and background, and rich annotations,
CelebA is widely employed for a variety of tasks including face attribute recognition, face detection,
landmark localization, and, importantly for our work, face editing and image inpainting.

2 Methodology

2.1 Masked-Variance Diffusion (MVD)

The fundamental concept behind MVD is that we naively injected diffusion noise (and adjusted
variance) only in the unknown region. For the image only, the pixels within the designated missing
areas are subjected to the iterative noising and denoising characteristic of diffusion models. The
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Figure 3: Masked Dataset Images.

known, unmasked pixels are preserved throughout this process. This targeted approach aims to
concentrate the model’s learning only on the regions that need to be generated.

During the forward (noising) process in MVD, corruption is specifically directed at these unknown
areas. The noise schedule itself can be guided by the input mask, ensuring that the diffusion applies
exclusively to the regions we intend to inpaint. This allows the model to focus its learning capacity
on the intricacies of filling these gaps.

Consequently, during the inference process, noise is added only to these masked patches, and the
model works to reconstruct the content within them. The pixels from the original image that were
known are carried forward and re-injected at each step, ensuring they remain untouched in the final
output. See the [supplementary section|for a detailed derivation of the forward and reverse processes.

A core assumption under this particular approach was that the mean of the global Gaussian would be
similar to the mean of pixel-wise Gaussians. This simplification was made to facilitate the adaptation
of standard diffusion posteriors to this masked context. While this method presents a clear path to
reducing computational load by not processing the entirety of the image data at each step of the
diffusion, its impact on image quality, particularly at the boundaries of the masked regions, was a key
aspect of our subsequent evaluation.

2.1.1 Results

For Training MSE and LPIPS (lower is better), our MVD approach generally showed better values
compared to the original ResShift baseline over the training steps. This suggested that the texture
generated by our model for the inpainted regions was potentially better.
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Figure 4: MVD vs Original ResShift Training Graphs

For Validation PSNR (higher is better) and Validation LPIPS (lower is better), the results were more
nuanced. While there were fluctuations, our MVD approach demonstrated competitive performance.
The texture of our image is better as compared to the ResShift images hence our MSE and LPIPS
values are low even though they have seams.
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Figure 5: MVD vs Original ResShift Validation Graphs

2.1.2 Drawbacks

Mask-edge artifacts: Visible seams and noise at the boundary of unknown patches. By changing the
forward noising to only inject noise inside the hole, we broke the Gaussian-Markov structure. The
Global Gaussian Mean = Local Pixel Wise Gaussian Mean assumption does not hold well and the
closed-form standard posterior it uses is wrong at the boundary. This mismatch shows up as sharp
seams where the “no-noise” region meets the “noisy” region.

Figure 6: Comparison of image inpainting results between ResShift (top row) and our MVD approach
(bottom row).

2.2 Exact Masked-Markov Diffusion (EMMD)

We define a true pixel-wise Markov forward (identity/delta on known pixels, Gaussian on unknown
pixels) and derive its exact posterior mean/variance to restore a valid reverse diffusion. This means
that for the known pixels in the image, the forward process is essentially an identity transformation
— they remain unchanged, represented by a delta function. For the unknown pixels, a standard
pixel-wise Gaussian diffusion process is applied, gradually noising them.

Hence by defining this explicit pixel-wise Markov forward process, we could then derive the mathe-
matically exact posterior mean and variance. This exact posterior is then used in the reverse diffusion
process, aiming to provide a more valid and stable mechanism for denoising the unknown regions
while perfectly preserving the known ones. The motivation behind EMMD was to create a reverse
diffusion process that is precisely consistent with the defined masked forward process, thereby hoping



to mitigate the boundary artifacts and improve the overall coherence of the inpainted image. See the
[supplementary section|for a detailed derivation of the forward and reverse processes.
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Figure 7: Pixel-Wise Conditional Generation Process.

2.2.1 Results

The quantitative comparison of EMMD, our MVD approach, and the ResShift baseline yielded the
following trends:

Training MSE and LPIPS: The graphs for training metrics (Mean Squared Error and LPIPS, where
lower is generally better) showed that EMMD often performed worse than MVD. In some cases,
EMMD’s error metrics were higher than or comparable to the original ResShift, suggesting that the
theoretically exact posterior did not straightforwardly translate into improved training dynamics for
these metrics.
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Figure 8: EMMD Training Graphs: Comparison between EMMD (App2), MVD(Appl) & Original
ResShift

Validation PSNR and LPIPS: Similarly, for validation (where PSNR is higher is better, and LPIPS
is lower is better), EMMD did not consistently outperform MVD and, in several instances, showed
metrics that were less favorable than even the original baseline. The presentation indicates that,
overall, the generation quality with EMMD was a concern.

2.2.2 Drawbacks

The artifacts persist, and the quality of generation has deteriorated. This is mainly due to the following
reasons:
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Figure 9: EMMD Validation Graphs: Comparison between EMMD (App2), MVD(Appl) &
Original ResShift

1. Extreme variance discontinuity: We go from “zero variance” outside the mask to “full DDPM
variance” inside. That 0 — [(3; jump is a brutally sharp step-function in the latent-space distributions.
Any tiny prediction error at the seam leaves a visible artifact.

2. Split training signal: During training, known regions sees an identity mapping (noising= 0 —
denoising=identity) while the unknown sees a full multi-step diffusion. The U-Net must learn two
completely different tasks in parallel, with no shared statistics at the boundary.

Figure 10: Comparison of image inpainting results between ResShift (top row) and our EMMD
approach (bottom row).

2.3 Addressing the Drawbacks of EMMD

To tackle the limitations observed with EMMD, such as extreme variance discontinuity and a split
training signal, we propose two primary refinements for future work:

Mitigating Variance Discontinuity: We propose smoothing the transition masks between known
and unknown regions and potentially retraining with a minimal noise floor in known areas. This
aimed to reduce the abrupt variance shift and lessen seam artifacts, with initial explorations into mask
smoothing showing some promise.

Simplifying the Learning Task with DiTs: To resolve the split training signal, following a RAS [3]
based approach to process only the unknown regions would allow the neural network to focus solely
on the denoising task for the inpainted area, rather than simultaneously learning an identity mapping
for known regions, thereby simplifying its objective.



Figure 11: Mask Smoothening: Smoothen the masks with a guassian filter such that change between
region is not abrupt.

Initial experiments using a Gaussian filter for smooth mask transitions yielded promising results
(Figure 11). Specifically, we can further refine mask handling by smoothing transitions between
regions and retraining with a minimal noise floor in the known areas to ensure variance remains
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Figure 12: Comparison of image inpainting results between ResShift (top row) and our Smoothened
EMMD approach (bottom row).

3 Training Details

We maintained the ResShift training configura-
tion, with two key changes: the Swin window

size was reduced from 8 (as used in ResShift) Figure 13: Training parameters
to 4, and the training duration was set to 200k Configuration Setting
iterations. Optimizer AdamW
Optimizer betas {0.9,0.999}
EMA Rate 0.99
. Base learning rate Se-5
4 Conclusion LR Scehdule Cosine
Warmup steps 5000
. . . . . Training steps 2e5
We tackled efficient diffusion-based image in- Loss Coefficients MSE: 1, LPIPS: 10
painting, aiming for faster inference without sig- Image size 256 x 256
nificant quality loss. Our investigation intro- Latent size G4 x 64
duced two main approaches: Masked-Variance Batch size .
qce h pp : Diffusion steps 4
Diffusion (MVD) and Exact Masked-Markov Noise schedule Exponential
Diffusion (EMMD), based on refining efficient Kappa . ) 2.0
frameworks like ResShift. MVD, applying U-Net Attention Resolutions [64, 30, 16, 8]

noise and variance adjustments only to un-

known regions, showed training promise but suf-

fered from mask-edge artifacts due to disrupted

Markov structure. EMMD, designed with a the-

oretically sound Markov forward process, also

exhibited artifacts and quality issues, primarily from variance discontinuities and a split training signal.
To mitigate these, we proposed future work including smoothed mask transitions, a minimal noise
floor in known regions, and using Diffusion Transformers (DiTs) to focus processing on unknown
areas.



References

[1] Zongcai Yue & Jian Wang & Chen Change Loy (2024) ResShift: Efficient Diffusion Model
for Image Super-resolution by Residual Shifting. Thirty-eighth Conference on Neural Information
Processing Systems

[2] Thibault Mayet & Peyman Shamsolmoali & Sebastien Bernard & Eric Granger & Romain
Hérault & Charles Chatelain (2024) TD-Paint: Faster Diffusion Inpainting Through Time Aware
Pixel Conditioning arXiv: 2410. 09306

[3] Zheng Liu et al (2025) Region-Adaptive Sampling for Diffusion Transformers|arXiv: 2502.
10389

Table 1: Author Contributions

Author Contribution

Rishikesh Bhyri Contributed 50% to the project, including idea development, implemen-
tation, experimentation, and writing.

Yash Rathi Contributed 50% to the project, including idea development, implemen-

tation, experimentation, and writing.



arXiv:2410.09306
arXiv:2502.10389
arXiv:2502.10389

Appendix / supplemental material

1. ResShift Forward and Reverse Process

Let,

RCXHXW

Tg € the clean latent,

y € ROXW  the degraded (known) latent,

M € {0, 1}**#*W " the binary mask,

The Forward Process is defined as below where eg = yo — g is the residual

Q(It|x03y0) = N(xh ZTo + Nt€o, HZntI)a t= 1; 27 e aT' (1)

and the closed form Reverse process is defined as,

2
_ QeMp— KoMp—
q(xe—1]ze, 20, 90) = N (xt—la Moty + 2 Lz, L 104t1> (2)
Mt un Ur
So the tractable approximation using a U-Net is defined as,
t—1 QT —1
:u9(xtay07t) = W*Txt+%f9(xt7y03t) (3)
t t

2. Our Approach

1. Modified Forward Process

We inject both the guidance drift and the Gaussian noise only inside the masked region. So modifying
the (3) to define the gaussian at pixel level,

For known region,
q(z" |0, yo) = (=™ — (™) )

and for unknown region,

q(@i™ |20, y0) = N (2™ 2§ + ipet™ w2 d), t=1,2,--- T ©)

Equivalently, writing

xt=x0+M®[meo+ mme}, e~ N(0,1).
——

ot

I1. Modified Reverse Process
a. Posterior in the Known Region
For each pixel ¢ with M (i) = 0, the forward step is
x4(i) = x4—1(i) (deterministic),
so the exact reverse is the Dirac delta
q(ze-1(0) | 24(2)) = 8x-1(2) — (),

i.e. in the known region

known (2)

2,known __
My =0.

= ‘Tf/(i)7 Oy



b. Posterior in the Unknown Region
For each pixel ¢ with M (i) = 1, the closed-form DDPM posterior is
q(@e1(0) | 24(0),w0(i)) = M1 (8); g™ (i), o7,

where

2
u;lnk( ) _ Mt—1 fﬂt(l) + Ql)e—1 l’o(i), CTt2.,unk _ R ntflat‘l—.
Nt Up U3

c. Combined Custom Reverse Step
‘We now blend the two cases element-wise via the mask M, broadcasting M to all channels:
M@Munk (1*M)@It, =MOGO o 2unk

Hence the final sampling equation is

i1 =pe + (Joi €, € ~N(0,I).

d. Final Re-injection of Clean Known Region
To guarantee the known region stays perfect, you optionally do

Tp—1 < M ® Ti—1 —+ (1—M) ® xg.

Forward (partial-noise) step

xy = [To + 77t€0] + M@[/{ nte], e~ N(0,1).

Reverse (standard DDPM posterior + masked sampling + re-injection)

Wt = C1,¢ Tt + C2t X0, 0,52 = posterior_variance,,

Tp_q = pt + /07 e ~N(0,1),

xt_leth_1+(1—M)@y.

VvV (1—ap1) Va1 By
GOt =—"—7F - Ct=—FT———.
1-— Ot 1-— O
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